Search results

1 – 3 of 3
Article
Publication date: 21 May 2021

Saddam Bensaoucha, Youcef Brik, Sandrine Moreau, Sid Ahmed Bessedik and Aissa Ameur

This paper provides an effective study to detect and locate the inter-turn short-circuit faults (ITSC) in a three-phase induction motor (IM) using the support vector machine…

331

Abstract

Purpose

This paper provides an effective study to detect and locate the inter-turn short-circuit faults (ITSC) in a three-phase induction motor (IM) using the support vector machine (SVM). The characteristics extracted from the analysis of the phase shifts between the stator currents and their corresponding voltages are used as inputs to train the SVM. The latter automatically decides on the IM state, either a healthy motor or a short-circuit fault on one of its three phases.

Design/methodology/approach

To evaluate the performance of the SVM, three supervised algorithms of machine learning, namely, multi-layer perceptron neural networks (MLPNNs), radial basis function neural networks (RBFNNs) and extreme learning machine (ELM) are used along with the SVM in this study. Thus, all classifiers (SVM, MLPNN, RBFNN and ELM) are tested and the results are compared with the same data set.

Findings

The obtained results showed that the SVM outperforms MLPNN, RBFNNs and ELM to diagnose the health status of the IM. Especially, this technique (SVM) provides an excellent performance because it is able to detect a fault of two short-circuited turns (early detection) when the IM is operating under a low load.

Originality/value

The original of this work is to use the SVM algorithm based on the phase shift between the stator currents and their voltages as inputs to detect and locate the ITSC fault.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 October 2019

Hossine Guermit, Katia Kouzi and Sid Ahmed Bessedik

This paper aims to present a contribution to improve the performance of vector control scheme of double star induction motor drive (DSIM) by using an optimized synergetic control…

Abstract

Purpose

This paper aims to present a contribution to improve the performance of vector control scheme of double star induction motor drive (DSIM) by using an optimized synergetic control approach. The main advantage of synergetic control is that it supports all parametric and nonparametric uncertainties, which is not the case in several control strategies.

Design/methodology/approach

The suggested controller is developed based on the synergistic control theory and the particle swarm optimization (PSO) algorithm which allow to obtain the optimal parameter of suggested controller to improve the performance of control system.

Findings

To show the benefits of proposed controller, a comparative simulation results between conventional PI controller, sliding mode controller and suggested controller were carried out.

Originality/value

The obtained simulation results illustrate clearly that synergetic controller ensures a rapid response, asymptotic stability of the closed-loop system in the all range operating condition and system robustness in presence of parameter variation in all range of operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 February 2019

Saddam Bensaoucha, Sid Ahmed Bessedik, Aissa Ameur and Ali Teta

The purpose of this study aims to focus on the detection and identification of the broken rotor bars (BRBs) of a squirrel cage induction motor (SCIM). The presented diagnosis…

121

Abstract

Purpose

The purpose of this study aims to focus on the detection and identification of the broken rotor bars (BRBs) of a squirrel cage induction motor (SCIM). The presented diagnosis technique is based on artificial neural networks (NNs) that use as inputs the results of the spectral analysis using the fast Fourier transform (FFT) of the reduced Park’s vector modulus (RPVM), along with the load values in which the motor operates.

Design/methodology/approach

First, this paper presents a comparative study between FFT applied on Hilbert modulus, Park’s vector modulus and RPVM to extract feature frequencies of BRB faults. Moreover, the extracted features of FFT applied to RPVM and the load values were selected as NNs’ inputs for the detection of the number of BRBs.

Findings

The obtained simulation results using MATLAB (Matrix Laboratory) environment show the effectiveness and accuracy of the proposed NNs based approach.

Originality/value

The current paper presents a novel diagnostic method for BRBs’ fault detection in SCIM, based on the combination between the signal processing analysis (FFT of RPVM) and artificial intelligence (NNs).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3